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The electrostatic component of the persistence length (LeO for three molecular-weight preparations of 
poly(styrene sulphonate) was determined from magnetic birefringence measurements (m.b.m.) by Weill 
and Maret in 1982. The ratio LJL~I plotted as a function of the Debye-Hiickel screening length (2ira) 
exhibited significant deviations from unity over the range 24~<2on (A)~< 108, where L~l is the analytical 
expression for the electrostatic persistence length for finite chain lengths given by Odijk. Weill, Maret and 
Odijk attempted to explain the discrepancy between theory and experiment by invoking 'semidilute' solution 
conditions for the long-chain results concomitant with a different degree of counterion condensation than 
used for the short-chain results. 

It is proposed in the present paper that a 'three-region' model for the counterion distribution about the 
polyion accurately represents the m.b.m, data without having to invoke differential counterion condensation 
properties of short and long chains, or having to postulate semidilute solution conditions. The three regions 
are: (1) Manning-type condensation on the surface of the polyion; (2) a counterion sheath in the vicinity 
of the polyion; and (3) the remaining solution. 

(Keywords: counterion distribution; Debye-Hiickel screening) 

INTRODUCTION 

The concept of a 'persistence length', or 'correlation 
length', is of value in describing the static and dynamic 
properties of a flexible polymer. A linear flexible polymer 
of contour length L can undergo at least three distinct 
types of motion: (1) stretching and contracting such that 
the contour length fluctuates by + d L ;  (2) bending 
through an angle 0 defined by the deviation from a 
rod-like configuration; and (3) twisting through an angle 
~o about the equilibrium configuration about the long 
axis of the polymer. 

The focus of the present study is on the ionic strength 
dependence of L b, the persistence length of bending. The 
local stiffness approximation (small deviations from 
rod-like extension on the microscopic scale) allows one 
to write: 

Lb = Lin + Lel (1) 

where Li. is the so-called 'intrinsic part '  of Lb and Let is 
the 'electrostatic component'  of Lb that is responsive to 
the electrical environment of the solution. For a chain 
of finite length in the rod-like limit, Odijk 1 obtained the 
following analytical expression for Lel (denoted as L~ 
and referred to as the analytical model): 

Le _- (,~B,~2U/4(beff) 2)h(L/J, DH) (2) 

where 1/(bell) is the average linear charge density, ;~DH 
is the usual Debye-Hiickel screening length, given by: 

2DH = (lO00/8nNA2als) x/2 (3) 

* Dedicated to Professor Walther Burchard on the occasion of his 60th 
birthday 

NA is Avogadro's number, Is is the ionic strength in 
moles/litre, 2B=e2/ekT is the Bjerrum length (e is the 
proton charge, e is the bulk dielectric constant, and kT 
is the thermal energy), and: 

h(Y) = 1 - (8/3Y)+ [exp( -  Y)/3][Y+ 5 + (8/Y)] (4) 

accounts for the finite length of the chain. Note that for 
h ( ~ ) =  1, equation (2) reduces to the series expansion 
result of Skolnick and Fixman 2 for a chain of infinite 
length whose configuration deviates slightly from a rod. 

Manning 3-5 has suggested that counterions condense 
onto charged rods (or cylinders) whose charged groups 
are separated by a distance b if: 

Z¢ ~M > 1 (5) 

where Zc is the counterion charge and ~u= 2Bib is the 
Manning condensation parameter. The physical signifi- 
cance of equation (5) is that the solvent cannot support 
a linear charge density greater than 1/2B. Counterions 
will therefore condense onto the surface until the 
condition (beff)  = b/Zo = 2B is met. Odijk and Houwaart 6 
modified equation (2) to include Manning condensation 
by an ad hoc substitution of 2B = (befe)- 

Weill and Maret reported magnetic birefringence data 
on poly(styrene sulphonate) (PSS) 7 and deoxyribonucleic 
acid (DNA) s. The ionic strength of these solutions was 
computed from the relationship: 

Is = Cs + (~/2)Cp (6) 

where C s is the concentration of added 1 : 1 electrolyte, 
is the degree of ionization of the polyion, and Cp is the 
monomer concentration of the polyion. These authors 
assumed that h (y )= l  in their use of equation (2). 

0032-3861/90/101823-08 
© 1990 Butterworth-Heinemann Ltd. POLYMER, 1990, Vol 31, October 1823 



Electrostatic component of persistence length of PSS: K. S. Schmitz 

e., 
2.o_ 

1.6_ 

i.o. 

0.~ 

.,It 

X~ . . . - ' "  "~Xs / 

I I I I I I I I I I I I 
0 20 40  80 I00 120 

kDH 

Figure 1 L~'~P/L~ versus 2nil for poly(styrene sulphonate). Magnetic 
birefdngence measurements were used by Weill and Maret 7 to study 
the ionic strength dependence of L,~ for PSS. The above data were 
obtained for the following ionic strength assumptions: I~=0.18C v 
(MW=15000 (x), 40000 (~7), 140000 ((3)); and I,=0.36Cp 
(MW= 140000 (e)) 

Reasonable agreement between the experimental and 
theoretical values of Lb was obtained for DNA using 
L i . =  50 nm in equation (1) and Manning condensation 
(ct =0.24) in equation (2). However, the results on the 
PSS system ( L i , = l . 2 n m  and ~t=0.36) were not as 
encouraging as in the DNA analysis. 

Weill, Maret and Odijk 9 reanalysed the PSS data in 
the absence of added salt (I,=(ct/2)Cp) using the full 
expression of equation (2). The results in their table 1 

I e x p / l "  a are plotted as ,_,=, /J"%t versus ).Dn in Figure 1 for 
I~ = 0.18Cp and I~ = 0.36C w where L:~ v is the experimental 
value of the electrostatic persistence length. 

Weill et al. 9 noted that the Manning condensation 
condition (I,=0.18Cp) gave reasonable agreement 
between L~l and --'=tr=~P only for the shortest chain length. 
The question is therefore raised as to the validity of either 
Manning condensation for flexible chains or the 
analytical expression for L~t, or both models. Apparently 
these authors chose to retain the analytical expression 
for L~t in the dilute solution limit, which necessitated the 
relationship I~=0.36Cp to fit the experimental data for 
the higher molecular-weight preparations. The discrep- 
ancies between ~,tr~P and L~ at the higher values of Cp 
were then attributed to so-called 'semidilute' solution 
properties of the PSS system 7'9 that are not accounted 
for in the Odijk model. This interpretation, however, is 
in contradiction to the Witten-Pincus modeP ° for 
semidilute solutions that was proposed to explain the 
increase in the reduced viscosity upon a decrease in the 
segment concentration. In this model the presence of 
other chains increases the screening of intracharge 
interactions, thus leading to a reduction in the effective 
persistence length with increasing polyion concentration. 

It is noted that both Manning condensation and the 
expression for L~t assume a two-region model for the 
counterion distribution. That is, the counterions are 
either tightly bound to the surface of the polyion or 
uniformly distributed throughout the remaining solution. 

It is well known, however, that the counterions are not 
uniformly distributed in a radial direction from the 
polyion surface. For example, Monte Carlo calculations 
reported by Le Bret and Zimm 11 indicate that there is 
a substantial differential in the counterion concentration 
as one proceeds from the surface of a cylinder into the 
bulk solution, a gradient that may extend beyond 50 A. 
This 'counterion sheath' of several fingstr6ms in thickness 
can have a profound influence on the flexible nature of 
the polyions as a function of the ionic strength. 

We examine in this paper the properties of a two-region 
and three-region distribution of counterions on the ionic 
strength dependence of Lev Previously described exact 
numerical methods of computing the electrostatic 
persistence length 12'13 are employed in this analysis. The 
persistence length obtained in this manner is denoted by 
L~t, and is referred to as the 'numerical model'. 

NUMERICAL MODEL 

According to Yamakawa 1., the average energy of 
bending, (Eb~ , for a linear flexible polymer is related to 
the elastic bending constant, Yb, by the expression: 

(Eb) =~ ( f  Lo Yb(~2r/~s2)2 ds) (7) 

where r is a point along the polymer and s is the distance 
of that point along the contour length of the chain. In 
the spirit of equation (1), we have: 

(Eb)=((y,n/2)f; ((32r/t~s2)2ds) 

+(~ f ;  ,=l(O2r/Os2)2 ds) (8) 

where Yin is assumed to be independent of curvature as 
it acts along the contour length of the polyion, whereas 
the electrostatic interaction acts directly from the space 
separating the charges and thus Yet may depend upon 
~2r/Ose (refs. 12 and 13). 

For a string of N +  1 equally spaced beads that 
undergoes a continuous bend, the line connecting beads 
1 and N + I  is the chord for an arc of angle 0=2(~ 
associated with a circle of radius R c = Nb/O. The spatial 
distance between the ith and j th bead is the chord length 
for an angle li-jl¢/N, i.e. b;~=(bN/¢)sin(li-jl¢/N). 
These parameters are illustrated in Figure 2. 

For a screened Coulombic interaction between 
'effective' charges on each group, z=tf, one has: 

N 

Eet(O ) = (A~ffN) ~ (N + 1 - j )  
j = l  

x exp[-(bN/~2Dn ) sin(Hp/N)]/[b sin(j~/N)] (9) 

where A =  [(eg=ff)2/e]. If a2r/~s2= 1/R~=constant, then: 

/fo T=t=2[E¢l(O)-E=l(O)] (1/Re) 2 ds 

= 2[E=l(0 ) -- E=t(O)]R2/L (10) 

and the electrostatic persistance length for the numerical 
model is defined as: 

Lnt=~et/kT=2[E=l(O)-Eel(O)]R2/LkT (11) 

To ensure that intermolecular interactions do not play 
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Figure 2 Schematic diagram of parameters for the numerical model 

a major role in the analysis, the ion atmosphere 
associated with neighbouring polyions must not 
significantly overlap. For simplicity we examine the 
relative volumes associated with a cylindrical monomeric 
unit of length (beff) and unit charge along the polymer 
backbone. It is assumed that the radius associated with 
the ion cloud surrounding the monomer unit is 
proportional to the Debye-Hfickel screening radius: 

ric ---- flic 2DH (12 ) 

where flie is a proportionality constant. Hence the volume 
of the ion cloud about the monomer unit is: 

Vie :- 7~(flie 2OH)2(b©ff) (13) 

The solution volume available for each monomer unit is 
defined as Vm=IOOO/NAC p. Since not all of the 
monomeric units may be charged due to Manning-type 
condensation, the effective volume associated with the 
cylindrical subunit is given by: 

Vef f : Vm/O~ = 7[(beff)ge2f (14) 

where Ref f is the radial extension from the polymer 
backbone. In the case of zero added salt, Cs=O in 
equation (6), and one has for the ratio Vic/V~ff: 

Vie / Vef f = fli2c ( bef f ) /42  a (15) 

It is clear that if Manning condensation occurs in which 
(beff)-----2B, then flie~<2 in order for the neighbouring 
polyions to behave independently of each other in the 
absence of added electrolyte. It is noted from equation 
(15) that the ratio Vie/V~ff is independent of Cp, and thus 
is also independent of dilution. 

Two-region system 
The two-region system assumes that the counterions 

are either condensed on the surface of the polyion or are 
uniformly distributed throughout the remaining solution. 
The Debye-Hiickel screening length for all pairwise 
interactions along the isolated chain is therefore 
computed from equations (3) and (6), where Manning 
condensation is assumed. 

Three-reoion system 
The basis of the three-region system is the Monte Carlo 

calculations of Le Bret and Zimm 11, which are used as 
a guide for the radial distribution of counterions about 
a cylinder, and of Zimm and Le Bret is, who used the 
Poisson-Boltzmann equation to examine the effect of 
geometry on the distribution of counterions. These 
calculations were carried out with the constraint 
10 A = a + re, where r c is the radius of the cylinder and a 
is the radius of the counterion. It was reported that for 
the rod geometry there is a fraction of residual 
counterions that cannot be diluted away, which they state 
corresponds to Manning condensation 15. In the present 
model it is assumed that these 'bound' counterions act 
simply to reduce the surface charge of the polyion, and 
thus define region 1 of the three-region system. The 
effective charge for each subunit of charge Zp in the 
polyion is therefore: 

Zef f ~--" zp(b / (be f f )  ) (16) 

The two remaining regions for counterion occupation 
are associated with the distribution of counterions in 
solution. According to Le Bret and Zimm ~ 1 for the case 
a = 1 A, the counterion distribution was found to follow 
closely the Boltzmann distribution law: 

Cc(r) = Cb exp[(q~(r))] (17) 

where (~b(r)) is the average reduced potential and C b is 
the 'bulk', or 'background', counterion concentration. 
One may therefore approximate the radial density 
function p(r) by: 

p(r) = AP0 exp( - Tr) + pb(2OH) (18) 

where Pb(2On) is the 'background' counterion density 
whose value depends upon the ionic strength of the 
solution, Apo=Po--Pb(21)n) is the 'excess' counterion 
density and 7 is a measure of the rate of decay of the 
distribution function with distance. 

In order for pb(2OH) to attain a constant value over a 
finite distance it is necessary that 2on < Ref f. If p(r) decays 
to pb(2DH) within the distance Reff, then p(r) is normalized 
in accordance with the expression: 

r R,lr 
(beff) p(r)27tr dr-- ~Cp Vef f = 1 (19) 

,dO 

Substitution of equation (18) into equation (19) and 
subsequent rearrangement gives: 

2 (b.ff)Apo 7c exp(-Tr)r  dr=2VrApoH(y) 

= 1 - L ( 2 o . )  (20) 

where 

H(y) = 1 - e x p ( -  y)(y + 1) (21) 

V~:K(bef f ) / )  ,2, y : T R e f f  and fb(,~DH)~---pb(2DH)Veff is the 
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fraction of counterions that represent the baseline of the 
distribution. The left-hand side of equation (20) is 
partitioned into two additional regions: region 2 is 
defined as a 'counterion sheath' in the vicinity of the 
surface of the cylindrical polyion, and region 3 is defined 
as the remainder of the solution that extends to Reff. 
Following the discussion associated with equations 
(12)-(15), the radius associated with the 'counterion 
sheath' is rcs =flcs2Dn. Hence by analogy with equation 
(15): 

( r c s / R e f f )  2 = f12¢(befe)/42 a (22) 

where fls¢ can be any value over the range 0 < fl~, ~< flit. 
The average fraction of counterions in region 2 above the 
bulk value is thus given by: 

fo c' 2(beff)Apon exp(-) ,r)r  dr=2ApoVrH(x)=f2 (23) 

where x=Tr¢, and H(x) is defined by equation (21). The 
fraction of counterions above the bulk value in region 3 is: 

f Reff 
2 (beff)Aporr exp ( -  7r)r dr = 2Apo Vr[H(y)- H(x)] 

o rcs 
=fa  (24) 

The concentration of counterions in region 2 is thus: 

C2 = (f2/V2)+ [ fb(2Dr0/Veff] (25) 

and for region 3: 

C 3 = (fa/Va)+ E fb()~DH)/l/eff] (26) 

with V3 = ~ft--  V2. The effective counterion concentration 
between the ith and j th charged groups, Co, is assumed 
to be a 'length weighted average' of the concentrations 
in regions 2 and 3: 

Cij = X 2 C  2 "~- X 3 C  3 (27) 

where Xk=Lk/bij (k= 1, 2), L2+La=bo, and L 2 and L 3 
are the total lengths of the line b o that lie in regions 2 
and 3, respectively. Using the identity defined by equation 
(19), solving for poVr in equation (20) and combining 
equations (25)-(27) gives for the concentration ratio 
c,d~c~: 
Co/=Cp= fb(2Dn) 

+ E1 --fb(,~Dn)]{X2B(x, y)w 2 

+ XaEw2/(w 2 - 1)'lE1 - B(x, y)]} 
(28) 

where B(y, y ) -  H(x)/H(y) and w = R=ff/r~ = y/x. 
The relative probability for a polyion to bend through 

an angle 0 relative to that of a rod configuration (0 = 0) 
is given by: 

P(O)/P(O) = exp{ - EEel(0) -- Eel(O)]/kT } (29) 

COMPUTATIONAL PARAMETERS 

The objective of the present paper is to show that the Cp 
dependence of Le~ reported by Weill and Maret 7 is 
consistent with current ideas regarding the counterion 
distribution about linear polyions without having to 
invoke 'semidilute' solution conditions concomitant with 
'non-Manning-type condensation'. Calculations using 
the 'three-region' model are therefore restricted to a single 
set of parameters to illustrate this point. A more detailed 

S. Schmitz 

analysis of the 'three-region' model is to be reported 
elsewhere 16. 

As noted in the discussion of equation (15), the 
parameter flie that is associated with a charged subunit 
must be less than 2 in order to ensure that the counterion 
atmospheres do not overlap. Unfortunately fli¢ is not a 
parameter that is under experimental control. We 
therefore assume a cell model similar to that employed 
by others in which the overlap of ion atmospheres is 
negligible. Focus is then given on only the intramolecular 
contributions to Lel. The degree to which the 'excess 
counterion concentration' extends beyond the surface of 
the charged cylindrical surface depends upon the value 
of y. In the present set of calculations the value 
y = yRef f = 8 was chosen because equation (21) gives the 
value H(y)=0.997, or less than 1% error in regard to 
'non-overlap' conditions of the adjacent 'excess counterion 
concentration'. 

Since 7Reff was chosen to be constant, it follows that 
1/~ is proportional to 2DR and that the relative volumes 
of regions 2 and 3 are independent of 2Dn. In order to 
adjust the relative concentrations in these two regions 
upon dilution, the background concentration of 
counterions must be a function of 2Dn. It is assumed that 
fb(2Dn) is a modified form of the Debye-HiJckel screening 
function: 

fb(,J, DH) -~ 1 -- A exp ( -  r0/,~,DH ) (30) 

where 1/> A ~> 0 and r o is a constant 'characteristic length' 
that determines the rate at which the background 
concentration of counterions decreases with ionic 
strength. Hence the limits of fb(2DH) are: 1 as 2DH--* 0 
and ( I - A )  as 2DH--* Or. Note that if A < I  then the 
2DH -* gO limit means that there is a fraction A of 
counterions that cannot be diluted from region 2. While 
this restriction appears to be consistent with the 
calculations of Zimm and Le Bret 15, there is a major 
difference in the physical interpretations of these 'bound' 
counterions. In the present model Manning condensation 
has already been taken into account by the reduction of 
the charge density along the polyion backbone. The 
fraction A of 'bound' counterions are confined to region 
2 and serve to 'screen' the effective charged units along 
the polyion backbone. 

Calculations for the three-region model were carried 
out with the parameters x = 2, y = 8, A = 0.1 and ro = 30 A. 
A representation of the three-region model employed in 
these calculations is given in Figure 3, and the calculation 
of the effective concentration of the linear weighted 
concentration given by equation (27) is schematically 
represented in Figure 4. 

Manning-type condensation can be taken into 
consideration in two ways: method 1 assumes that the 
charges of zef r = 1 are separated by an effective distance 
(beff)  ---- )]'B; and method 2 assumes a reduced charge on 
each group in accordance with equation (16) while 
maintaining the actual charge spacing b. 

It is assumed that the actual molecular parameters for 
PSS are ~=0.36, b=2.7 A and the monomer molecular 
weight of 209. The PSS parameters for the method 1 
calculations are: .reef= 1, ( b e f f ) =  7.18 A (28 for water at 
20°C) and the number of charged groups is N + 1 = ns = 
~Mp/209=26, 69 'and 240, corresponding to the 
molecular weights Mp=15000, 40000 and 140000, 
respectively. The PSS parameters for the method 2 
calculations are: Zef f = 0 .38 ,  b = 2.7 A and ns = Mp/209 = 
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Figure 3 Schematic diagram of the three-region model. The small ion 
distribution about the cylindrical axis of the polyion is assumed to 
decay spatially as an exponential function to the bulk solution 
concentration. The three regions are: region 1, Manning condensation 
on the surface of the linear polyion with a degree of dissociation ~; 
region 2, a step function representation of the 'counterion sheath' of 
radius r~, containing the fraction f2 of counterions; and region 3, a 
step function representation of the remainder of the solution between 
polyions, containing the fraction f3 of counterions. The parameter ), 
is the rate of spatial decay of the exponential distribution function. The 
baseline fraction of counterions is denoted by fb 

Figure 4 Schematic representation of the effective ionic strength 
between two charged groups. L 2 is the total distance within the 
counterion sheath and L3 is the total distance in the bulk solution for 
charged groups i and j and an angle 0 u as measured from the centre 
of a circle of radius Re 

70, 186 and  648, corresponding to M p = 1 5 0 0 0 ,  40000 
and  140000, respectively. 

The values of 2Dn used in these calculat ions were the 
values reported by Weill, Maret  and  Odijk9: 2oi~ (A)=  24, 
34, 48, 68, 76, 96 and  108. 

R E S U L T S  

The ratio L~/L~I for the two-region model  for selected 
values of the bend ing  angle 0 at the reported values of 
2ira are given in Table 1 for method  1 calculat ions and  
Table 2 for method  2 calculations.  

A somewhat  unexpected result of these calculat ions is 
that  the analyt ical  form Lea, given by equa t ion  (2) is quite 
accurate over a large range of bending  angles even though 

it was derived under  the assumpt ion  of small deviat ions 
from the rod-like configurat ion.  It is also clear from 
Tables 1 and  2 that  calculat ions using method  2 provide 
better  agreement  with the analytical  expression than  
method  1 for short chains. 

The ratio L~l/L~l for the three-region model  is given 
in Table 3 for method  1 calculat ions and  Table 4 for 
method  2 calculations.  Al though the values of Lnj/L~ are 
less than  uni ty  in these sets of calculations,  this ratio can 
be made greater than  uni ty  by decreasing the value of x 
(ref. 16). This is due to the fact that  smaller values of x 
result in more  counter ions  being par t i t ioned from region 

Table 1 L'~JL't: method 1 for two-region model 

((b=ff) = 7.18 A and Zcff: 1) 

0 (deg) 

n~ ,~Dn 20 60 100 140 180 

26 24 1.06 1.07 1.09 1.13 1.19 
34 1.07 1.08 1.11 1.16 1.23 
48 1.08 1.10 1.13 1.18 1.25 
68 1.10 1.11 1.14 1.19 1.26 
76 1.10 1.11 1.14 1.19 1.26 
96 1.11 1.12 1.15 1.19 1.26 

108 1.11 1.12 1.15 1.19 1.26 

69 24 1.01 1.02 1.02 1.03 1.04 
34 1.02 1.02 1.03 1.04 1.05 
48 1.02 1.03 1.04 1.07 1.10 
68 1.02 1.03 1.05 1.09 1.15 
76 1.02 1.04 1.06 1.10 1.16 
96 1.03 1.04 1.07 1.11 1.17 

108 1.03 1.04 1.07 1.11 1.18 

240 24 1.00 1.00 1.00 1.00 1.00 
34 1.00 1.00 1.00 1.01 1.01 
48 1.00 1.00 1.01 1.01 1.01 
68 1.00 1.01 1.01 1.01 1.02 
76 1.00 1.01 1.01 1.02 1.02 
96 1.01 1.01 1.01 1.02 1.04 

108 1.01 1.01 1.02 1.03 1.04 

Table 2 L~I/L~,: method 2 for the two-region model 

(b=2.7 A and zar=0.38) 

0 (deg) 

n, 2Dn 20 60 100 140 180 

70 24 1.02 1.03 1.05 1.08 1.14 
34 1.03 1.04 1,06 1.10 1.17 
48 1.03 1.04 1.07 1.11 1.18 
68 1.04 1.05 1.07 1.12 1.18 
76 1.04 1.05 1.07 1.12 1.18 
96 1.04 1.05 1.08 1.12 1.17 

108 1.04 1.05 1.08 1.11 1.17 

186 24 1.01 1.01 1.01 1.02 1.03 
34 1.01 1.01 1.02 1.03 1.05 
48 1.01 1.01 1.03 1.05 1.09 
68 1.01 1.02 1.04 1.07 1.13 
76 1.01 1.02 1.04 1.08 1.14 
96 1.01 1.02 1.05 1.09 1.15 

108 1.01 1.02 1.05 1.09 1.15 

648 24 1.00 1.00 1.00 1.00 1.00 
34 1.00 1.00 1.00 1.00 1.01 
48 1.00 1.00 1.00 1.01 1.01 
68 1.00 1.00 1.01 1.01 1.02 
76 1.00 1.00 1.01 1.01 1.02 
96 1.00 1.00 1.01 1.02 1.03 

108 1.00 1.01 1.01 1.02 1.04 
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Table 3 L[~/L~,~: method 1 for the three-region model 

((b=ff) =7.18 A, z=ff= 1, x=2, y=8, A =0.1, ro=30 A) 

0 (deg) 

n, 2DH fb 20 60 100 140 180 

26 24 0.97 0.89 0.92 0.97 1.04 1.11 
34 0.96 0.88 0.90 0.96 1.03 1.11 
48 0.95 0.89 0.90 0.95 1.02 1.10 
68 0.94 0.93 0.94 0.97 1.02 1.10 
76 0.93 0.94 0.96 0.98 1.03 1.10 
96 0.93 0.98 0.99 1.01 1.05 1.12 

108 0.92 0.99 1.00 1.03 1.07 1.13 

69 24 0.97 0.83 0.83 0.86 0.88 0.91 
34 0.96 0.77 0.79 0.82 0.87 0.92 
48 0.95 0.74 0.76 0.82 0.88 0.94 
68 0.94 0.73 0.76 0.82 0.89 0.96 
76 0.93 0.74 0.76 0.82 0.89 0.96 
96 0.93 0.75 0.76 0.82 0.90 0.97 

108 0.92 0.76 0.77 0.83 0.90 0.98 

240 24 0.97 0.81 0.81 0.81 0.81 0.81 
34 0.96 0.75 0.75 0.75 0.75 0.76 
48 0.95 0.70 0.70 0.70 0.72 0.73 
68 0.94 0.66 0.67 0.68 0.70 0.73 
76 0.93 0.66 0.66 0.68 0.70 0.74 
96 0.93 0.64 0.65 0.67 0.71 0.75 

108 0.92 0.64 0.65 0.68 0.72 0.77 

Table 4 LnJL[l: method 2 for the three-region model 

((bar) =2.7 A, z~ff =0.38, x=2, y=8, A =0.1, ro=30 A) 

0 (deg) 

n, 2OH fb 20 60 100 140 180 

70 24 0.97 0.86 0.89 0.94 0.99 1.06 
34 0.96 0.84 0.86 0.91 0.98 1.05 
48 0.95 0.85 0.86 0.90 0.96 1.04 
68 0.94 0.88 0.89 0.91 0.96 1.03 
76 0.93 0.89 0.90 0.92 0.97 1.03 
96 0.93 0.91 0.92 0.95 0.98 1.04 

108 0.92 0.93 0.94 0.96 1.00 1.05 

186 24 0.97 0.82 0.83 0.85 0.88 0.90 
34 0.96 0.77 0.78 0.82 0.86 0.90 
48 0.95 0.73 0.75 0.80 0.86 0.92 
68 0.94 0.72 0.74 0.80 0.87 0.94 
76 0.93 0.72 0.74 0.81 0.87 0.95 
96 0.93 0.74 0.75 0.81 0.88 0.95 

108 0.92 0.75 0.76 0.81 0.88 0.95 

648 24 0.97 0.81 0.81 0.81 0.81 0.81 
34 0.96 0.75 0.75 0.75 0.75 0.76 
48 0.95 0.70 0.70 0.70 0.71 0.73 
68 0.94 0.66 0.66 0.68 0.70 0.73 
76 0.93 0.65 0.66 0.67 0.70 0.73 
96 0.93 0.64 0.65 0.67 0.71 0.75 

108 0.92 0.64 0.64 0.67 0.72 0.76 

2 to region 3, thus approaching  the two-region mode l  in 
the asymptot ic  limit x --, 0. (Recall that  the choice of x = 2 
in the present three-region calculat ions is based on the 
trend of L=l on ;tOll for PSS as repor ted  by Weill, Mare t  
and Odi jk  9 and not  on the magnitude of these data.)  

It is clear from the three-region calculat ions that  the 
value of  L[~ depends more  strongly on the value of  the 
bending angle than for the two-region model.  This 
increased sensitivity of  L~I on 2DH is a direct result of  the 
variable concent ra t ion  Cij between the two pairs of 
charged groups.  To  construct  the L~/L~l versus 2DI~ plot  
to compare  with the exper imental  results summar ized  in 
Figure 1, we examine  the probabi l i ty  of  bending through 

an angle 0 relative to the rod-l ike configurat ion.  This is 
to ensure that  the probabi l i ty  of occurrence is virtually 
the same for all values of  L~l. Selected values of  P(O)/P(O) 
for the three chain lengths are given in Table 5. Clearly 
P(20°)/P(O)>0.98 for all values of  ns; hence the values 
of  L¢"~ calculated at 0 = 20 ° were used" , a m the Lel/Lel versus 
2Dn plots given in Figure 5. 

D I S C U S S I O N  

It is clear f rom the compar isons  made  in Tables 1 and 2 
that  the Odi jk  1 formula t ion  of  L~t given by equa t ion  (2) 
compares  well with the exact numerical  evaluat ion  of  L~l, 
even for deviat ions substantial ly removed  from a rod-like 
configurat ion.  This means  that  the deviat ions of L~-[V/L~ 
from unity as shown in Figure 1 are not due to the 
mathematical approximations intrinsic to the der ivat ion 

Table 5 P(O)/P(O) for two- and three-region models = 

0 (deg) 

n, 2VH fb 20 60 100 140 180 

70 24 0.97 0.9963 0.9661 0.9037 0.8107 0.6910 
24 1.00 0.9956 0.9607 0.8928 0.7951 0.6721 
68 0 . 9 4  0.9883 0.8980 0.7358 0.5300 0.3247 
68 1.00 0.9861 0.8806 0.6963 0.4782 0.2753 

108 0.92 0.9842 0.8654 0.6628 0.4330 0.2322 
108 1.00 0.9824 0.8505 0.6312 0.3928 0.1969 

186 24 0 . 9 7  0.9983 0.9843 0.9558 0.9126 0.8554 
24 1.00 0.9979 0.9808 0.9475 0.8990 0.8372 
68 0.94 0.9910 0.9194 0.7768 0.5853 0.3839 
68 1.00 0.9874 0.8912 0.7217 0.5169 0.3181 

108 0.92 0.9831 0.8559 0.6288 0.3745 0.1716 
108 1.00 0.9772 0.8105 0.5500 0.2958 0.1185 

648 24 0 . 9 7  0.9995 0.9951 0.9865 0.9736 0.9566 
24 1.00 0.9993 0.9939 0.9833 0.9675 0.9467 
68 0 . 9 4  0.9967 0.9704 0.9184 0.8417 0.7436 
68 1.00 0.9950 0.9556 0.8811 0.7795 0.6607 

108 0.92 0.9925 0.9338 0.8194 0.6607 0.4831 
108 1.00 0.9882 0.8985 0.7414 0.5527 0.3694 

Method 2 calculations with model parameters given in Tables 3 and 4 

Inel 
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Figure 5 L;I/L~I versus 2DH for the three-region model. The set of 
arbitrary parameters used in these calculations were: x=2, y=8, 
b=2.7A, z,ff=0.38, A=0.I,  ro=30A, and n,=70 (@), 186 (O) and 
648 (x) 
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of equation (2). The explanation must therefore lie in the 
phenomena not considered in the Odijk model. 

Weill, Maret and Odijk 9 attempted to circumvent the 
problem by invoking 'semidilute' solution conditions on 
the higher molecular-weight preparations. In order for 
this interpretation to be viable, however, they had to 
impose a different degree of counterion condensation for 
the higher molecular-weight preparations (Is=0.36Cp) 
than for the lower molecular-weight preparations 
(ls=0.18Cp). In making this assumption the f e x p / t a  a . , e l  / a - ~ e l  

exp  a 
v e r s u s  ~'DH curves were shifted to higher values of Le= /Lel 
and lower values of 2Dn. The result was values of L~[P/L~I 
that were greater than unity for values of 2DH < 50 A. 
Hence the effect of 'chain overlap' is to 'stiffen' L v and 
therefore give a much larger value for "-'elrexP if Li. is 
assumed unchanged. This argument is untenable 
because: (1) it makes an unwarranted assumption that 
the degree of counterion condensation is chain-length- 
dependent, a position not supported by other experimen- 
tal data; (2) it requires that short chains are more efficient 
in causing counterion condensation than the long chains, 
thereby inferring that long chains become 'stiffer' than 
short chains as the ionic strength is lowered; and (3) it 
requires that the semidilute solution effects on Lp act in 
a direction opposite to that for neutral polymers, the 
latter being manifested as the presence of faster 'collective 
modes' that result from chain-chain contact points. 

It is suggested in this paper that the discrepancy 
between L~ p and L~l lies mainly in the basic assumption 
of a statistically uniform distribution of intervening small 
ions between any two pairs of charged groups on the 
linear polyion. As illustrated in Figure 5, the ratio r e ~ p / r a  X.~el /x .~  el  

based on the three-region model mimics the 2DH 
dependence of experimental data given in Figure 1 for 
the three molecular weights examined. The discrepancy 
in the magnitudes of these two sets of data is partially 
overcome by taking into consideration the angle averaged 
value of L"e,/L~l: 

( L~I/L;D - ~ [P(O)/P(O)][L~I(O)/L~I] 
y'  [P(O)/P(O)] 

_ Y'. P(O)[ t '~,(O)/ t~l  ] 
(31) Z P(O) 

since P(0) is constant. To illustrate we use the values 
given in Tables 4 and 5 for the five values of 0. For n s = 70 
and 2DH=24A, one calculates from equation (31) the 
value (L~I/L~I) = 0.93, which compares with the value of 

n a _ _  L J L e ~ -  0.86 at 0 = 20 ° that appears in the plot given in 
Figure 5. The reason that L~l increases as one departs 
from a rod-like configuration is due to two primary 
factors: (1) the interaction between two charges acts 
directly through the solution and not along the chain 
contour, hence the interaction between these two groups 
initially increases as the linear polyion is bent; and (2) 
the 'effective' intervening ionic strength initially decreases 
due to the relative weighting factors X 2 and X 3 in 
equation (27). It is noted, however, that under certain 
conditions L~, for the three-region model may actually 
decrease as 0 is further increased due also to the relative 
weighting factors X 2 and X 3 (ref. 16). 

It is of interest to note that long chains may actually 
become 'more stiff' than short chains as the ionic strength 
is lowered. Although this conclusion was drawn from 
objection (2) to the Weill, Maret and Odijk 9 

interpretation given above, the reason for the 'inverse 
chain stiffening' lies not in differential condensation of 
short and long chains but rather in the cumulative 
electrostatic requirement for a screened Coulombic 
potential. To illustrate, let us assume that we are located 
at thejth charged group in the chain. As the ionic strength 
is lowered, the force exerted by other charged groups 
increases due to two effects. First, the existing interactions 
are increased due to the reduced screening effect of a 
smaller number of intervening ions. Secondly, more 
groups become 'visible' to the j th group through new 
electrostatic interactions that result from the reduced 
number of intervening ions. For short chains, however, 
the number of 'new groups' rapidly becomes depleted 
and any additional force exerted on the j th group must 
come solely from an increase in the existing interactions. 
Owing to the damped nature of a screened Coulombic 
interaction, the range of significant increments to the 
interaction energy (relative to kT) is somewhat limited. 
As a result, the short chains become less sensitive to 
further decreases in the ionic strength than do the larger 
chains. This type of behaviour is manifested in the Odijk 
expression given by equation (2). Rearrangement of this 
expression to the form 2Dn/L~l versus L/2Dn results in a 
minimum at the value 13 (2vn/L)mi. = Ymi. = 4.1155, or: 

2DH/L~l=39.94(beff)2/2BL (2Dn/L =4.1155 ) (32) 

The quantity Ymi, is a ' turn-around' value in that the rate 
of polyion expansion upon increase in 2Dn is governed 
more by the function h(Y) than ~.2 n in equation (2). It 
is also evident that flexible chains never achieve a fully 
expanded rod-like configuration, even if L < ;ton. 

The two conclusions drawn from equation (2), i.e. that 
short chains may be more flexible than longer chains and 
that flexible chains do not achieve 'extended-rod status', 
are consistent with recent viscosity measurements on PSS 
in the absence of added salt as reported by Yamanaka 
et al.X 7. The viscosity data were obtained with three types 
of Viscometers (Ubbelohde, precision rotational and 
variable shear viscometers) under nitrogen atmosphere 
conditions to minimize contamination by dissolved CO 2. 
These authors stated that the relative viscosity of their 
lowest molecular-weight sample ( ( M , )  = 3.7 x 105) was 
significantly lower than for the other samples. This 
observation can be explained if the lower-weight sample 
was more flexible than the other samples under identical 
ionic strength conditions. Data on the remaining samples 
for the intrinsic viscosity ([q] = KM a) gave a power law 
ofa  = 1.2, which is significantly smaller than the expected 
value of a = 2 if the PSS was fully extended. 

CONCLUSIONS 

It is concluded that the three-region model provides a 
more viable explanation for the L~[P/L~I versus 2DH data 
on PSS of Weill and Maret 7 than the 'semidilute' solution 
interpretation of Weill, Maret and Odijk 9. This assertion 
is based on the observation that the three-region model 
is consistent with current thoughts on the distribution 
of small ions in the vicinity of the polyions, and that 
short and long chains are treated equally in regard to 
the degree of counterion concentration. It is also 
concluded that very flexible polyions with screened 
Coulombic intrachain interactions never achieve rigid- 
rod status regardless of the value of the ratio L/2D. Hence 
there is no 'coil-to-rod' transition for these flexible coils, 
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al though the coils can become highly extended at the 
lower ionic strength solutions.  
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